A forward semi-Lagrangian method for the numerical solution of the Vlasov equation

نویسندگان

  • Nicolas Crouseilles
  • Thomas Respaud
  • Eric Sonnendrücker
چکیده

This work deals with the numerical solution of the Vlasov equation. This equation gives a kinetic description of the evolution of a plasma, and is coupled with Poisson’s equation for the computation of the self-consistent electric field. The coupled model is non linear. A new semi-Lagrangian method, based on forward integration of the characteristics, is developed. The distribution function is updated on an eulerian grid, and the pseudo-particles located on the mesh’s nodes follow the characteristics of the equation forward for one time step, and are deposited on the 16 nearest nodes. This is an explicit way of solving the Vlasov equation on a grid of the phase space, which makes it easier to develop high order time schemes than the backward method. Key-words: Semi-Lagrangian method, Runge-Kutta, plasma simulation, Vlasov equation ∗ INRIA-Nancy-Grand Est, CALVI Project † IRMA Strasbourg et INRIA-Nancy-Grand Est, CALVI Project ‡ IRMA Strasbourg et INRIA-Nancy-Grand Est, CALVI Project Une méthode semi-Lagrangienne en avant pour la résolution numérique de l’équation de Vlasov Résumé : Ce document concerne la résolution numérique de l’équation de Vlasov qui est un modèle cinétique permettant de décrire l’évolution d’un plasma. Elle est couplée à une équation, par exemple l’équation de Poisson, permettant le calcul des champs auto-consistants. Le modèle couplé est non linéaire. Nous proposons ici une nouvelle méthode semi-Lagrangienne dans laquelle les caractéristiques sont intégrées en avant, dans le sens du temps, contrairement à la méthode semi-Lagrangienne classique qui intègre les caractéristiques en arrière. L’autre ingrédient de la méthode semi-Lagrangienne est une technique de déposition de l’information portée par les particules sur une grille. Celle-ci est basée sur un produit tensoriel de splines cubiques de sorte qu’en deux dimensions la formule de déposition implique 16 points de la grille. Grâce à cette nouvelle technique la méthode semi-Lagrangienne devient complètement explicite et peut s’appuyer sur des solveurs numériques d’équations différentielles classiques, rendant ainsi plus simple la montée en ordre en temps. La méthode est validée sur plusieurs cas tests représentatifs des problèmes réalistes basés sur ce modèle. Mots-clés : méthode semi-Lagrangienne, Runge-Kutta, simulation de plasmas, équation de Vlasov Forward semi-Lagrangian Vlasov solvers 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Convergence Estimates for Semi-Lagrangian Schemes Application to the Vlasov-Poisson Equation

We prove enhanced error estimates for high order semi-lagrangian discretizations of the Vlasov-Poisson equation. It provides new insights into optimal numerical strategies for the numerical solution of this problem. The new error estimate O ( min ( ∆x ∆t , 1 ) ∆x + ∆t ) is based on advanced error estimates for semi-lagrangian schemes, also equal to shifted Strang’s schemes, for the discretizati...

متن کامل

Hermite Spline Interpolation on Patches for a Parallel Solving of the Vlasov-Poisson Equation

This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast with Particle In Cell (PIC) methods which are known to be noisy, we propose a semi-Lagrangian type method to discretize the Vlasov equation in the two dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel m...

متن کامل

On the geometric properties of the semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equation

The semi-Lagrangian discontinuous Galerkin method, coupled with a splitting approach in time, has recently been introduced for the Vlasov–Poisson equation. Since these methods are conservative, local in space, and able to limit numerical diffusion, they are considered a promising alternative to more traditional semi-Lagrangian schemes. In this paper we study the conservation of important invari...

متن کامل

A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations

In this report, a charge preserving numerical resolution of the 1D Vlasov-Ampère equation is achieved, with a forward Semi-Lagrangian method introduced in [10]. The Vlasov equation belongs to the kinetic way of simulating plasmas evolution, and is coupled with the Poisson’s equation, or equivalently under charge conservation, the Ampère’s one, which self-consistently rules the electric field ev...

متن کامل

Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations

The Vlasov equation is a kinetic model describing the evolution of a plasma which is a globally neutral gas of charged particles. It is self-consistently coupled with Poisson’s equation, which rules the evolution of the electric field. In this paper, we introduce a new class of forward Semi-Lagrangian schemes for the Vlasov-Poisson system based on a Cauchy Kovalevsky (CK) procedure for the nume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Physics Communications

دوره 180  شماره 

صفحات  -

تاریخ انتشار 2009